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Abstract 

We give an algebraic proof of a recent theorem of Swarup, which states that if H is 
a subgroup of infinite index in a finitely generated group G and if e(G, N) = 1 for all subgroups 
N aH with H/N z Z, then e(G, H) = 1 + rank H’(G, Z[H\G]). We also consider some 
generalizations of this theorem. 

1. Introduction 

Throughout, G denotes a group and H denotes a subgroup of infinite index. Our 

main interest is the study of the number of ends e(G, H) of the pair (G, H). 

We briefly recall some definitions. A subset E of G is called H-finite if it is contained 

in a finite union of right cosets of H, that is E s HF for some finite F c G. The 

symmetric difference of two subsets E and E’ is denoted by E + E’. We say that E is 

H-almost invariant if and only if E + Ex is H-finite for all x E G. The ends of the 

pair (G, H) correspond, in effect, to the H-almost invariant subsets E which satisfy 

E = HE and which are not H-finite. We refer the reader to [l, 21 for a more detailed 

account. 

1.1. Let E be an H-almost invariant subset of G and let N = {h E H 1 hE = El. Suppose 

that the following conditions hold. 

(1) N is a normal subgroup of H; 

(2) hEnE = 8, for all he H\N; und 

(3) HE = G. 

Then e(G, N) 2 IH: NI. 
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Proof. First note that for any x, y E G, Ex A Hy is contained in single coset of N. To 

see this, suppose given z, z’ E Ex n Hy. Then z’z- i belongs to H and also z’z- ’ En E 
contains z’x- ’ and so is non-empty. Hence z’z-i belongs to N. 

Now for any x E G, E + Ex is H-finite, and so it follows from the above that it is 

actually N-finite. Hence E is N-almost invariant. Moreover, E is not N-finite, for 

otherwise G = HE would be H-finite, contradicting the assumption that H has infinite 

index in G. Since N is normal in H, each of the subsets hE, for h E H, corresponds to an 

end of the pair (G, N) and since these sets are in natural bijective correspondence with 

H/N we have e(G, N) 2 JH:NI. 0 

2. From derivations to almost invariant sets 

For a group A we write C(A) for the set of functions from G to A which are constant 

on left cosets gH of H, and we write I(A) for the subset of C(A) consisting of functions 

which are supported on finitely many left cosets. C(A) and I(A) are themselves groups 

under pointwise multiplication, and admit an action of G given by @“(g’) = 4(gg’) 

for 4 E C(A) and g, g’ E G. A derivation 6: G ---t Z(A) is a function satisfying 

S(gg’) = (Sg)“‘(Sg’). For such a derivation, we write 6* for the function from G to 

A defined by 

6”(g):= 6g(l). 

In general, 6* is not a homomorphism, but it does at least satisfy the following. 

2.1. For all g E G and h E H, 

6*(gh) = 6*(g)b*(h). 

For each subset Y of A, let EY be the subset of G defined by 

Ey:= {gEGIG*(g-‘)E Y}. 

2.2. For all Y c A, E, is H-almost invariant. 

Proof. Fix Y. For convenience, we write E := Ey. We must show that for all x E G, the 

symmetric difference E + Ex is H-finite. For g E G, g belongs to E + Ex if and only if 

exactly one of g and gx-’ belongs to E, or equivalently, if and only if exactly one of 

S*(gg’) and 6*(xg-‘) belongs to Y. Since 6*(xg-‘) = 6x(g-‘)6*(g-‘) it follows that 

6x(g- ‘) is non-trivial for every g E E -t Ex. Hence E + Ex c (supp(Sx))) ’ and this is 

H-finite as required. 0 

2.3. For all h E H and Y E A. 

hEy = EYcG*,,-l. 
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Proof. Let g be any element of G. Then g belongs to hE if and only if 6* (g- 1 h) E Y. 
Since 6*(g-‘h) = 6*(g-‘)6*(h) by (2.1), it follows that 

hE = (g E Gld*(g-‘)E Y(d*h)-‘} = EYcG*/,-l 

as required. 0 

2.4. For subsets Y and Y’ of A, EynEy, = Eyny. 

2.5. Let N denote the kernel of 6*IH. Then e(G, N) 2 1 H: NI. 

Proof. Let B denote the image of 6* lH and let Y be a transversal to B in A, so that A is 
the disjoint union of the cosets yB, y E Y. If h E H and 6* h = b then (2.3) shows that 
hEy = Eybml. If b is non-trivial then Y n Yb-’ = 0 and it follows from (2.4) that 
EY n EybmI = 0. It also follows that N = {h E H 1 hEy = Ey }. Thus, the result follows by 
applying (1.1) with E:= Ey. 0 

3. Swarup’s theorem and generalizations 

Throughout this section we assume that G is finitely generated, and welet A denote 
an abelian group, written additively. In this case, I(A) and C(A) can be identified with 
the induced and coinduced modules Indg(A) and Coindg (A). The inclusion of I(A) 

into C(A) induces a map 

p:H’(G, Z(A)) + H’(G, C(A)). 

We refer the reader to [Z, 33 for details concerning the next lemma. This result depends 
on G being finitely generated and on H having infinite index. 

3.1. Let A be either a prime field or a subring of Q. Then e(G, H) = 1 + rank Ker p 
Using the Shapiro-Eckmann lemma, H’(G, C(A)) can be identified with 

Hom(H, A), and through this identification the map p is given by 

P CSI = d* IH, 

where 6 : G -+ I (A) is a derivation representing a cohomology class [S] E H1 (G, Z(A)). 
Swarup’s theorem [3] now follows at once by combining the above with (2.5). 

3.2. (Swarup’s theorem). Suppose that e(G, N) = 1 for all N a H with H/N z Z. Then 

e(G, H) = 1 + rank H1 (G, I(Z)). 

Proof. In view of (3.1), it suffices to show that p: H’(G, I(Z)) + Hom(H, Z) is trivial. 
Let 6: G + Z(H) be a derivation. Then (2.5) shows that e(G, N) = I H: NI, where 
N = KerG*IH. If 6*lH is non-trivial then H/N is isomorphic to Z and e(G, N) = cc, 
contrary to hypothesis. Therefore p [S] = 6* IH is trivial for all 6. 0 



110 P.H. Krophokr, M.A. Roller~Journal oj’Pure and Applied Algebra 109 (1996) 107-111) 

We also have the following generalization. 

3.3. Suppose that the image of p:H’(G, I(Z)) + Hom(H, Z) has rank n 2 1. Then 

there is a normal subgroup N of H such that H/N E Z” and e(G, N) = cr. 

Proof. Choose derivations S,, . . . , 6,: G + I(Z) so that SF IH, . . . , S,* lH are linearly 

independent elements of Hom(H, Z). Now let A be Z” and let S be the derivation from 

G to I(A) defined by 

fig (9’) = (6 19 (9’L . . . > &Y (9’)). 

Let N be the kernel of 6* lH: H + A. Then H/N z Z” and (2.5) shows that 

e(G, N) = co. 0 

Working over finite fields one can obtained similar results by the same arguments. 

3.4. Let F, denote the Galois ,field of p elements where p is a prime. If e(G, N) = 1 for 

allNQHwithlH:NI=p,thene(G,H)=l+rankH’(G,Z(F,)). 

3.5. Suppose that the image of p:H’(G, Z(F,)) -+ Hom(H, F,) has rank n 2 1. Then 

there is a normal subgroup N of H such that H/N is an elementary abelian p-group of 

rank n and e(G, N) 2 p”. 

4. Concluding remark 

In [l] a new end invariant Z(G, H) was introduced and it is easy to see that 

e(G, H) 2 2 S- H’(G, I(F2)) # 0 * E(G, H) 2 2. 

Swarup’s theorem, and the results of this paper provide a sharpening of the second 

implication here, by giving more precise information about how non-zero elements of 

H’(G, I(F,)) contribute to e”(G, H). 
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